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CENTRIFUGAL CONVECTION IN RAPID ROTATION

OF BODIES MADE OF CELLULAR-POROUS MATERIALS

UDC 532.546V. K. Baev, A. V. Fedorov,

V. M. Fomin, and T. A. Khmel’

Gas flows inside and around rapidly rotating bodies made of cellular-porous materials are studied nu-
merically and experimentally. Within the framework of the previously proposed physicomathematical
model, an appropriate numerical algorithm is developed and tested. Internal flows and a conjugate
problem with the external flow are considered. The calculated moment and dynamic pressure are
in good agreement with experimentally measured characteristics of a rotating porous disk on a solid
substrate.
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Introduction. Highly permeable cellular-porous materials (CPM) found their application as filtering ele-
ments and heat- and mass-exchangers in various fields of engineering.

The idea of using these materials and their analogs for manufacturing rotors of multifunctional energy-
convecting devices was put forward at the Institute of Theoretical and Applied Mechanics (ITAM) of the Siberian
Division of the Russian Academy of Sciences in 2002 and served as a basis for an integration project in basic research
[1, 2]. A numerical and theoretical study of external and internal aerodynamics in the case of rotation of permeable
bodies was performed in [3].

A physicomathematical model based on principles of mechanics of heterogeneous media was developed in [4];
some new exact and approximate (asymptotic and numerical) solutions were obtained there for one-dimensional
and two-dimensional swirl flows inside rotating porous bodies. In the general case, where the drag of a porous
structure can be presented as a quadratic or two-term (linear-quadratic) dependence on flow velocity, an analysis
of two-dimensional swirl flows can be performed by methods of numerical simulation only. For the full problem
of gas motion during rotation of a porous body to be solved, the internal and external flows should be considered
together, in a conjugate formulation.

The objectives of the present work are
— numerical and experimental determination of the flow field inside and in the vicinity of a rotating solid

CPM body;
— analysis of numerical solutions obtained and their stability;
— determination of the influence of physical parameters (dimensionless length of the cylinder, drag law, and

drag coefficients) on the type and character of the flow;
— verification of the proposed mathematical model by comparing numerical results with experimental data.
Physical and Mathematical Formulation of the Problem. A cylindrical CPM body set into rotation

around its centerline with a certain angular velocity is considered. Owing to rotation, a forced flow is formed inside
the body under the action of centrifugal convection. A mathematical model that describes a steady isothermal flow
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of an inviscid incompressible gas inside such a body was proposed in [4]. In what follows, it is convenient to use
a system of unsteady equations in terms of vorticity and stream function. With allowance for viscous terms, the
equations in dimensionless variables in the laboratory (with respect to a motionless observer) cylindrical coordinate
system (r, z, θ) fitted to the axis of rotation have the following form:
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Here u, v, and w are the radial, axial, and azimuthal components of velocity, f is the volume force, χ is the modified
vorticity, and ψ is the stream function. The characteristic scales of the problem include the angular velocity of
rotation of the body Ω, the characteristic length (outer radius of the cylinder R), the characteristic velocity RΩ,
the gas density under standard conditions ρ0, the time scale 1/Ω, and the Reynolds number Re = R2Ω/ν (ν is
the kinematic viscosity). In the general case, the force of interaction between the gas and the porous skeleton is
f = K|v − vs|(v − vs) + L(v − vs), where vs = riθ is the dimensionless velocity of a volume element of the solid
skeleton. The dimensional parameters of body drag k = K/R and λ = LΩ depend on material properties, porosity
of the structure, and gas viscosity [5]. The external flow is also described by system (1) with f = 0.

Numerical Simulation of Internal Flows. A numerical algorithm for solving boundary-value problems
for similar equations was developed and successfully used by one of the authors of the present paper to solve problems
of external MHD flows of a conducting fluid under the action of electromagnetic fields [6]. The method is based on
using Arakawa’s conservative scheme [7] for approximating convective terms and solving an elliptic equation for the
stream function by an iterative method. The steady-state solution is determined by solving an unsteady problem
by a time-dependent method with a nested averaging procedure. The stability and approximating properties of the
nested averaging method preventing weak nonlinear Henrici’s instability were analyzed in [8]. Two problems were
considered to test the numerical method, as applied to the present mathematical model.

Problem 1. Determination of Stability of the Flow in a Porous Disk with an Internal Cavity within the
Numerical Approach Used. We consider a rotating disk made of a porous material with impermeable end faces
z = 0 and z = z0 and with an internal cavity of radius r0, as in [3, 4]. We assume that L = 0 in the expression for
the drag force, and the values of K are varied. The boundary layer on the end faces is neglected, and the flow at
the entrance is assumed to be not swirled. Then the boundary conditions for system (1) have the following form:
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If we neglect the viscous terms and assume that the solution is independent of z, it can be determined from the
system of ordinary differential equations (ODE), which follow from system (1) [4]. To solve the problem numerically
by a time-dependent method, we use the asymptotic approximation obtained in [4] as part of the initial data:
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Fig. 1. Convergence of the numerical solution in Problem 1 (transition from the asymptotic to the limiting
solution) (a) and Problem 2 (behavior of the total pressure integral for different initial data) (b).

The exact value of the flow rate q is obtained by an iterative method from the relation
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which follows from the Bernoulli integral at the entrance and at the exit [4]. A similar iterative procedure allows
us to determine the value of ψ in the course of solving the time-dependent problem in a two-dimensional domain.
Using the presentation un+1 = un(1+σ) (we assume that σ is small) and linearization of condition (2) with respect
to a small increment σun, we can find
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correspondingly, we have ψn+1 = (1 + σ)ψn. The procedure is repeated at each time step and allows us to satisfy
condition (2) as the steady-state solution is approached.

Numerical solutions obtained by using the above-described algorithm are plotted in Fig. 1a for r0 = 0.2
and different values of K in the form of azimuthal velocity profiles with a certain time step. The dashed curves
show the initial profiles (asymptotic solution); the limiting curves merge in the graph with the solutions of the
ODE system [4]. Both for given values of q (K = 0.1 and q = 0.1; K = 0.5 and q = 0.5) and with allowance for
relation (2) (K = 2), the numerical solution monotonically approaches the solution of the ODE system. With the
use of procedure (3), the flow rate q in a steady flow is 0.171, which coincides with data for the same value K = 2
obtained in [4].

Retaining of the steady solution in the unsteady problem and convergence to the steady solution in the
iterative problem with close initial data indicate that the solution is stable to infinitesimal perturbations and low-
amplitude finite disturbances. Calculations with arbitrary initial data revealed the following feature. If the initial
value of the flow rate is higher than the true value, the iterative procedure (3) is diverging. For initial data with
low flow rates (including those with the zero initial value of q), the iterations converge, and the solution obtained
by a time-dependent method also corresponds to the solution of the ODE system.
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Problem 2. Internal Two-Dimensional Flow in a Rotating Cylinder. A two-dimensional axisymmetric
swirl flow inside a cylinder rotating in free space is numerically simulated. The domain 0 � r � 1, 0 � z � z0 is
considered; the boundary conditions have the form
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For K = 0, the solution can also be obtained from an appropriate ODE system [4]. The initial conditions were
varied from the distribution corresponding to the solution of the ODE system for a linear drag law to zero values
of all functions. The accuracy was controlled by estimating the numerical functional
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and determining the residue ∆N = N −N∗, where N∗ is calculated by solving the ODE system [4]. The solution
was found to converge with grid refinement; in particular, for K = 0, L = 1, z0 = 0.5, and U0 = 0, the values of the
residue ∆N = N −N∗ on a sequence of grids 21 × 21, 41 × 41, and 81 × 81 were 0.00032, 0.000084, and 0.000022,
respectively. The steady solution is also independent of the initial approximation, which can be seen in Fig. 1b,
which shows the time evolution of the functional N in calculating the time-dependent problem with K = 1, L = 0,
z0 = 0.5, and U0 = 0. The initial data here were the solutions of the ODE system [4] obtained for K = 0 and
different values of L [the corresponding values of V0 = v(0, r) are plotted in Fig. 1b].

Two-dimensional flow patterns are shown in Fig. 2a in the form of streamlines and isolines of azimuthal
velocity, pressure, and total pressure P = p + 0.5(u2 + v2 + w2). The pressure in the steady flow was determined
by integrating equations of motion in the conventional form under the condition that the Bernoulli integral of the
incoming flow p(0, 0) + v(0, 0)2/2 = 0 was satisfied. With allowance for χ(r, 0) = 0, this yields
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The pressure in the entire domain has negative values, reaching a minimum at the output boundary r = 1. The
total pressure is negative in the region adjacent to the axis of symmetry and the plane of symmetry, positive in the
region r > 0.5, z > 0.1, and substantially higher than zero at the exit.

Figure 2b and c illustrates the effect of deviation of the incoming flow on the solution (U0 �= 0) and shows the
streamlines and the pressure distributions for positive and negative values of U0. Comparing Figs. 2a, 2b, and 2c,
we can note that the value and sign of U0 affect the distribution of input and output sections. The maximum values
of ψ, which determine the flow rate, reach 0.083 (for U0 = 0), 0.088 (for U0 = 0.04), and 0.079 (for U0 = −0.1).
Thus, the flow rate is lower for negative values of U0, and the inflow partly occurs through the side surface of the
cylinder. The distributions of azimuthal velocity for U0 = 0.04 and U0 = −0.1 almost coincide with those plotted
in Fig. 2a for U0 = 0. Concerning the total pressure, changes in U0 affect the shape and position of the zero
isoline and the magnitude of pressure at the exit (r = 1). This indicates that obtaining reliable information on
the internal distribution of parameters and integral characteristics, such as dynamic pressure and flow rate, which
strongly depend on the flow pattern, requires coupled consideration of the internal and external flows.

Solution of the Conjugate Problem for the Internal and External Flows. The conjugate problem
is solved by domain-through computations with the use of the above-described numerical algorithm both for the
internal and for the external flow. Formulation of the boundary conditions depends on whether the volume where
the body rotates is open or closed. The computations were performed both in a closed volume with no-slip conditions
on the surfaces z = 0, z = z1, and r = r1, and in an open volume with “soft” input and output conditions in the
form
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Fig. 2. Two-dimensional patterns of the internal flow for U0 = 0 (a), 0.04 (b), and −0.1 (c).
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The conditions at the axis of symmetry and in the plane of symmetry z = z1 were the same as those in Problem 2.
The flow patterns inside the rotating disk with z0 = 0.5, K = 1, L = 0, ∆z = 0.0125, and ∆r = 0.025 are plotted
in Fig. 3a (z1 = 5, r1 = 10; closed volume) and in Fig. 3b (z1 = 1, r1 = 3; open volume). We had ψmax = 0.0673
(Fig. 3a) or 0.0671 (Fig. 3b) on the porous body surface. As the solution coincided and close values of the flow
rate were obtained, we confined ourselves in what follows to computations in an open volume with “soft” boundary

40



à

4.7 4.9

0.2

0.4

0.6

0.8

1.0

0

r

z

q

b

1.7

0.02

0.05

_0.02

0.2

0.3

0.4

0.5

0.
04

5

4.5

1.5 1.9

0.2

0.4

0.6

0.8

1.0

0

r

z

q

4.7 4.9 z

w

1.7

4.5

1.5 1.9 z

w

4.7 4.9 z

p

1.7

4.5

1.5 1.9 z

p

4.7 4.9 z

P

1.7

4.5

1.5 1.9 z

P

_0.00
5

0.00
5

0.0
1

0.0
2

0.0
4

0.0
6

0.0
8

_
0.
02

_
0.
01

6

_0.024

_0.0
24

0.02

0.05

0.2

0.3

0.4

0.5

0.
04

5

_0.00
5

0.00
5

0.0
1

0.0
2

0.0
4

0.0
6

0.0
8

_
0.
02

_
0.
01

6

_0.0
24

_0.016

_0.02

_0.024

_0.01
6

Fig. 3. Internal flows in solving the conjugate problem in a large closed volume (a) and in a small
open volume (b).

conditions (4). The computations were performed for different values of K (from 1 to 50) and for three values of z0:
0.1, 0.2, and 0.5.

The character of the flow with K = 1 and z0 = 0.5 (Fig. 3) corresponds to the solution of Problem 2 (for
the internal flow) under the condition U0 < 0 on the incoming flow (see Fig. 2c). The inflow here proceeds both
through the end face and partly through the side surface of the cylinder. The isolines of the azimuthal component
of velocity differ from those in Fig. 2a, though the maximum values of w are also reached on the surface. With
decreasing z0, the inflow region passes to the end face, and the flow pattern for z0 = 0.1 is similar to that in Fig. 2b
for U0 > 0.

The flow rates (ψmax on the porous body surface) for different drag parameters K and dimensionless length
of the cylinder z0 are given in the first three columns of Table 1. The flow rate as a function of z0 is monotonically
increasing and nonlinear with a tendency to saturation (ψmax = 0.0607 for K = 50 and z0 = 1). We can assume
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TABLE 1

Flow Rate and Moment of Disk Rotation as Functions
of the Dimensionless Thickness and Drag Parameter

K
ψmax M

z0 = 0.1 z0 = 0.2 z0 = 0.5 z0 = 0.1 z0 = 0.2 z0 = 0.5

1 0.0155 0.0304 0.0671 0.0525 0.104 0.235
5 0.0201 0.0392 0.0827 0.103 0.202 0.426
10 0.0195 0.0383 0.0779 0.113 0.222 0.430
25 0.0166 0.0321 0.0643 0.102 0.195 0.389
50 0.0133 0.0255 0.0508 0.0868 0.163 0.318

that there exists a limiting value of the flow rate for z0 → ∞. The dependence of the flow rate on the drag
parameter K is nonmonotonic, and a value of K at which the maximum flow rate is reached can be determined for
each particular z0.

The moment of the force necessary to sustain rotation of the porous disk with a prescribed constant
angular velocity is balanced by the integral moment of the circumferential drag force and is determined as

M =
∫ ∫

V

2πr2fθ dr dz. The last three columns of Table 1 give the values of the moment M for different val-

ues of z0 and K. It is seen that the maximums in the dependence M(K) do not coincide with the maximums
in ψmax(K). Thus, we can find a value of K at which the maximum ratio of the flow rate to the moment is
reached (as for a disk with closed end faces and an internal cavity [4]). The dependence of the moment on z0 is
also monotonically increasing, whereas the ratio ψmax/M increases for K < 5 and decreases for K > 5 with rather
insignificant variations. This behavior does not allow finding the optimal geometric relations in terms of ψmax/M

for a fixed value of K. Both M and ψmax/M tend to reach a “plateau” with increasing z0 (ψmax/M = 0.0160 for
K = 50 and z0 = 0.5; ψmax/M = 0.0161 for z0 = 1). The revealed properties can be useful for design of devices
based on the use of rotating bodies made of cellular-porous materials.

Calculation of the Experimental Model. A disk made of cellular-porous copper (150 mm in diameter
and 20 mm thick) rotating in open space was experimentally studied at ITAM. One side of the disk was covered by
a continuous thin-walled copper disk alloyed to the cellular-porous structure during manufacturing.

The photograph and schematic of the setup are shown in Fig. 4. To measure the drag-force moment, the disk
was mounted on the electric motor axis resting on two ball-bearing supports (Fig. 4b), whereas the stator (motor
casing) was restrained from motion by an arm resting on a force-measurement strain-gauge device calibrated by
static loading of the arm. The dynamic pressure was measured by a total pressure probe moved by a traversing
gear with respect to the disk.

The flow around the disk was preliminary visualized by the smoking wire method. It was shown that inflow
conditions are substantially affected by objects located at distances smaller than the disk radius. Therefore, the
free space on the inflow side had nothing except for the pressure probe.

Figure 5 shows the measured moment for different values of the angular velocity and tangential velocity in
the middle part of the side surface of the disk.

The disk motion was calculated within the framework of the model described above. Note that there are
no reliable data on drag parameters of the material used. The cellular-porous structure is nonuniform, but the
mean parameters of the pore size, character of wire roughness, and calculated value of material porosity are close
to those of one of the samples considered in [5] (sample No. 38). Correspondingly, the drag law is assumed to be
the two-term formula [5] ∆p/h = α0u + β0u

2, and the experimentally measured coefficients for sample No. 38 [5]
α0 = 2 ·107 m−2 and β0 = 690 m−1 allow us to determine the values of L = α0ν/Ω = 1.5ω, where ν is the kinematic
viscosity of the gas, ω = Ω0/Ω, Ω0 = 2000 rpm, and K = β0R = 51.5. Other parameters in the computations
were taken in accordance with the experimental data: R = 0.075 m, z0 = z/R = 0.25, and ρ0 = 1.3 kg/m3. The
computations were performed in an open volume 0 � z � 0.5, 0 � r � 1.5 subject to the boundary conditions (4);
the porous body size was 0.25 � z � 0.5, 0 � r � 1. The conditions w = r and ∂u/∂z = 0 were imposed on the
solid impermeable substrate.
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The computed results are plotted in Fig. 6. Figure 6a shows the two-dimensional patterns of the flow in
the form of isolines of the main parameters. The profiles of dynamic pressure in different directions and velocity
components in different cross sections inside and in the vicinity of the rotating body for ω = 1 (Ω = 2000 rpm)
are shown in Figs. 6b and 6c, respectively. It is seen from Fig. 6b that the main contribution to the total dynamic
pressure is main by the azimuthal component w, whereas two remaining components (plotted on the left ordinate
axis) are comparatively small. It is also seen in Figs. 6b and 6c that the maximum values of azimuthal velocity and
dynamic pressure in the middle cross section (z = 0.25) are reached on the side surface of the cylinder, and their
values rapidly decrease with distance from the surface (r > 1). The range of variation of w along the axis increases
drastically thereby (see Fig. 6c). The computed azimuthal component of dynamic pressure Pw = 0.5ρ0R

2Ω2w2 is
compared with its values measured near the side surface in the middle part of the disk in Fig. 5a. The computed
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data (dashed curves) are plotted for the values r = 1 and r = 1.05 (which refers to the distance from the surface
equal to 3.75 mm) and correspond to a quadratic dependence on angular velocity. The experimental curve is close
to the predicted curve for r = 1.05 and Ω < 400 sec−1 (up to 4000 rpm) but somewhat deviates as the angular
velocity increases.

The computed values of the moment

M = ρ0R
5Ω2

0.5∫

0.25

1∫

0

2πr2fθ dr dz

are in good agreement with experimental results for Ω = 2000 rpm (about 200 sec−1; see Fig. 5b), but some
difference is observed with increasing Ω. An analysis of the drag law also yield an exponential dependence of the
force and moment on Ω with an exponent of 2 for high values of Ω. The corresponding curve M = AΩ2 passing
through the first experimental point is shown by the dot-and-dashed curve in Fig. 5b. The difference at high values
of Ω can be caused by the experimental error or by ignoring some of the factors in computations (e.g., the volume of
the nut that partly overlapped the inflow cross section was neglected). Within the assumptions made, the agreement
between experimental and numerical data is fairly reasonable.

Conclusions. Flows inside bodies made of cellular-porous materials rotating with high angular velocities
are examined theoretically and experimentally.

A numerical technology for studying conjugate internal and external incompressible gas flows inside and in
the vicinity of rapidly rotating bodies made of cellular-porous materials is developed within the theoretical model
based on principles of mechanics of continuous media. The numerical algorithm is based on application of Arakawa’s
explicit finite-difference scheme, an iterative method for the stream function, and a procedure of nested averaging
for obtaining stable solutions by a time-dependent method. The numerical method is tested on two problems,
which demonstrate the convergence and stability of the numerical solution. The computation results obtained in a
comparatively small open volume with appropriate “soft” input and output conditions are shown to be reliable.

The influence of the governing parameters of the problem on the flow patterns and types is analyzed. The
effect of the incoming flow direction and dimensionless length of the cylinder on the character of the internal flow
is revealed. The possibility of obtaining flows with an inflow section on the side surface of the rotating cylindrical
body is demonstrated. The effect of the drag parameter and geometric relations on the flow rate of the fluid through
the porous body and on the moment of the rotation force is found.

Experimentally measured moment and dynamic pressure for a rotating disk made of a cellular-porous ma-
terial on a solid substrate are presented. Numerical simulations of the flow pattern inside and outside a similar
sample with the use of the model and algorithm proposed ensure satisfactory agreement in terms of local and
integral characteristics as functions of angular velocity.

The mathematical model and the numerical method can be developed to study nonisothermal flows. As the
equation for temperature in the Boussinesq equation is similar to the vorticity equation, it can also be solved by
the numerical algorithm developed.

The authors are grateful to A. D. Frolov and A. Ya. Korotkikh for obtaining the experimental data and to
Z. R. Ismagilov for availability of the disk made of a cellular-porous material.
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